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Position Aware Linear Solid (PALS)

Outline

# Review the practical issue/problem of surface effects

# Introduce (PALS) & compare linear peridynamic solid (LPS)

# Selecting/creating/evaluating influence functions

# Matching deformations: dilatation, deviatoric

# Demonstration calculations verify efficacy of PALS model

# Summary, closing commments, and path forward



What is the Dreaded Surface Effect?

Example: Isotropic-Ordinary Model (LPS)
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The following related aspects

contribute to mismatch.

Geometric surface effects

Nonlocal model kinematics

Nonlocal model properties

Discretization error



Ordinary peridynamic models

Dreaded Surface Effect

Causes relate to material points near surface

# Mathematical models assume all points are in the bulk

∗ Points near surface are missing bonds

∗ Missing bonds imply and induce incorrect material properties

∗ In the bulk mathematical models are consistent

# Isotropic ordinary materials have a dilatation defect at the surface



Isotropic ordinary elastic models

Compare LPS with PALS

Kinematics

Linear peridynamic solid (LPS) model

W =
1

2
Kθ2 +

α

2
(ωε)• ε, θ =

3

m
(ω |X|)• e

m = ω |X| • |X|, α =
15µ

m

PALS model

W =
1

2
Kθ2 +µ(σε)• ε, θ = (ω |X|)• e



Compare LPS with PALS

Linear peridynamic solid model

# ω is given and used for every point in mesh

PALS model

# ω , σ are computed for each point in mesh

# Initial influence functions ω0, σ0 given

# Select ω , σ as best approximations to ω0,σ 0 subject to

kinematic constraints: matching deformations ek〈ξ 〉= ξ ·Hkξ
|ξ |

I(ω ,λ ) =
1

2
(ω −ω0)• (ω −ω0)−

K

∑
k=1

λ k
[

(ωx)• ek −Tr H
k
]

N(σ ,τ) =
1

2
(σ −σ0)• (σ −σ0)−

K

∑
k=1

τk
[

(σεk)• εk − γk
]



PALS: Selecting dilatation influence functions

Linear problem for Lagrange multipliers λ k

Functional

I(ω ,λ ) =
1

2
(ω −ω0)• (ω −ω0)−

K

∑
k=1

λ k
[

(ωx)• ek −Tr H
k
]

Variation

δ I = ∇I •δω +
K

∑
k=1

∂ I

∂λk

δλk,

Substituting (2) into (1) gives linear problem for Lagrange multipliers

∂ I

∂λ k
= 0 =⇒ (ωx)• ek = Tr H

k (1)

∇I = 0 =⇒ ω = ω0 +
K

∑
k=1

λ kxek (2)



Matching deformations: Sample Set

Probe operator ek〈ξ 〉= ξ ·Hkξ
|ξ |

Dilatation

Let probe ∆ be denoted by ∆ = XX = YY = ZZ





XX 0 0

0 0 0

0 0 0





︸ ︷︷ ︸

H1





0 0 0

0 YY 0

0 0 0





︸ ︷︷ ︸

H2





0 0 0

0 0 0

0 0 ZZ





︸ ︷︷ ︸

H3

Let bond ξ components be denoted by {a,b,c}

e1 =
∆a2

|ξ |
e2 =

∆b2

|ξ |
e3 =

∆c2

|ξ |



Matching deformations: Sample Set

Probe operator ek〈ξ 〉= ξ ·Hkξ
|ξ |

Deviatoric

Let probe ∆ be denoted by ∆ = XY = XZ = YZ





0 XY 0

XY 0 0

0 0 0





︸ ︷︷ ︸

H4





0 0 XZ

0 0 0

XZ 0 0





︸ ︷︷ ︸

H5





0 0 0

0 0 YZ

0 YZ 0





︸ ︷︷ ︸

H6

Let bond ξ components be denoted by {a,b,c}

e4 =
2ab∆

|ξ |
e5 =

2ac∆

|ξ |
e6 =

2bc∆

|ξ |



Model problem: simple shear

PALS versus LPS: expectation dilatation θ = 0



Model problem: simple shear

PALS versus LPS



Demonstration calculation: Recover Young’s Modulus E

Influence functions: ω0 = σ0 = e
−|ξ |2

δ2

Property Value

Edge length: b 0.5
Length: L 5.0

Num cells (along b): n variable

Cell size: h h = b/n

Horizon: δ 3.1h
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Re-visit tensile test using PALS and LPS

Influence functions: ω0 = σ0 = 1
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Results

PALS sharply reduces error



Position Aware Linear Solid (PALS)

Summary

# Reviewed the practical issue/problem of surface effects

# Introduced novel Position Aware Linear Solid model (PALS)

# PALS dilatation and energy density correct in pure shear

# Demonstration calculations show efficacy of PALS

THANK YOU

Questions?


